做不到那么优秀?那来看看成为一名糟糕的大数据平台工程师有哪些表现?
比如详细阅读官方文档,进行功能验证和Demo测试,对类似系统进行横向比较,收集他人踩坑经验,寻找问题的其他可能解决途径等,这些工作往往有可能更加快速全面地帮你了解一个系统,并做出合理的方案设计。但是这么做会涉及持续的思考、分析、判断和尝试的过程,所以有时候很多同学往往不愿意在这上面多费力气。 谜之问题的谜之解决方式 相比阅读代码的执着,很多同学在分析问题时的表现却往往与之相反。 分布式环境下的问题往往错综复杂,如果一个问题不是明显的确定性逻辑错误,而是跑得慢、性能差、莫名其妙地随机崩溃、超时等,不少同学很容易就快速陷入迷茫中。而为了将自己从迷茫中挣脱出来,往往会在问题排查过程中,轻易地将某些故障的现象归结为故障的原因,进而以治标不治本的方式来解决问题。 做得好一点的代码流派的同学则可能在排查问题过程中,发现一个Error或Warning日志,还会去阅读相关的代码,最后花几天时间阅读完代码,可能分析出了什么流程会打印出这个Error日志,但却不知道或者解释不了为什么当时程序会走到这个流程,同样也就排查不下去了。 上述情况,通常还是方法论问题,不知道如何把握问题的重点,在问题自身信息尚未收集清楚的时候,就过早地聚焦在某个收益未知的现象上。而对于进一步的动作,比如:
勤奋好学,但是回头即忘 作为一个有梦想的工程师,你一定会去关注新技术。 如果方法得当,在短期内依靠深入阅读文档、翻阅核心代码等手段,你往往可以快速地在几天内对一个系统形成基本的认知。 只可惜,大数据领域的技术日新月异,加上很多系统相对复杂的架构特点,决定了这些新技术往往信息量不小,如果你没有真正深入地实践过,通常很难形成有效的长期知识记忆。可能再过一个月,你刚掌握的内容就都忘得一干二净了。 花费的精力就要产生价值,做好留存工作,在一个需要长期积累的领域,很多时候可能比拉新更加重要,将来的激活成本也会低很多。 总结 反面视角谈完了,再从正面鸡汤的角度总结一下吧:
最后再补充一句在食品安全反伪科学中常说的一句话:“脱离剂量谈毒性,都是耍流氓”。上述所有问题,并无绝对的对错,重要的是对程度的把握,你是否认清了自己的目标,你所做的事情与你想要的结果是否能够匹配。 【编辑推荐】
点赞 0 (编辑:吕梁站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |